
OpenDaylight

and OpenStack
Beryllium (February 21, 2016)

OpenDaylight and OpenStack February 21, 2016 Beryllium

ii

OpenDaylight and OpenStack
OpenDaylight Community

Beryllium (2016-02-21)
Copyright © 2015 Linux Foundation All rights reserved.

This guide describes how to use OpenDaylight with OpenStack.

This program and the accompanying materials are made available under the terms of the Eclipse Public License v1.0 which
accompanies this distribution, and is available at http://www.eclipse.org/legal/epl-v10.html

http://www.eclipse.org/legal/epl-v10.html

OpenDaylight and OpenStack February 21, 2016 Beryllium

iii

Table of Contents
Overview ... 5
1. Installing OpenStack .. 1
2. Installing OpenDaylight ... 2

OpenStack with OVSDB ... 2
OpenStack with GroupBasedPolicy .. 6
OpenStack with Virtual Tenant Network ... 12

OpenDaylight and OpenStack February 21, 2016 Beryllium

iv

List of Figures
2.1. Neutron Port .. 7
2.2. Neutron Network ... 8
2.3. Neutron Subnet .. 8
2.4. Neutron Security Group and Rules .. 9
2.5. Neutron Router .. 10
2.6. Neutron network mapping ... 11
2.7. Neutron subnet mapping ... 11
2.8. Neutron port mapping ... 12
2.9. OpenStack Architecture .. 13

OpenDaylight and OpenStack February 21, 2016 Beryllium

5

Overview
OpenStack is a popular open source Infrastructure as a service project, covering compute,
storage and network management. OpenStack can use OpenDaylight as its network
management provider through the Modular Layer 2 (ML2) north-bound plug-in.
OpenDaylight manages the network flows for the OpenStack compute nodes via the
OVSDB south-bound plug-in. This page describes how to set that up, and how to tell when
everything is working.

http://www.openstack.org

OpenDaylight and OpenStack February 21, 2016 Beryllium

1

1. Installing OpenStack
Installing OpenStack is out of scope for this document, but to get started, it is useful to
have a minimal multi-node OpenStack deployment.

The reference deployment we will use for this document is a 3 node cluster:

• One control node containing all of the management services for OpenStack (Nova,
Neutron, Glance, Swift, Cinder, Keystone)

• Two compute nodes running nova-compute

• Neutron using the OVS back-end and vxlan for tunnels

Once you have installed OpenStack, verify that it is working by connecting to Horizon and
performing a few operations. To check the Neutron configuration, create two instances on
a private subnet bridging to your public network, and verify that you can connect to them,
and that they can see each other.

OpenDaylight and OpenStack February 21, 2016 Beryllium

2

2. Installing OpenDaylight

Table of Contents
OpenStack with OVSDB ... 2
OpenStack with GroupBasedPolicy .. 6
OpenStack with Virtual Tenant Network ... 12

OpenStack with OVSDB
Prerequisites: OpenDaylight requires Java 1.7.0.

• On the control host, Download the latest OpenDaylight release (at the time of writing,
this is Beryllium)

• Uncompress it as root, and start OpenDaylight (you can start OpenDaylight by running
karaf directly, but exiting from the shell will shut it down):

$ tar xvfz distribution-karaf-0.2.1-Helium-SR1.1.tar.gz
$ cd distribution-karaf-0.2.0-Helium
$./bin/start # Start OpenDaylight as a server process

• Connect to the Karaf shell, and install the odl-ovsdb-openstack bundle, dlux and their
dependencies:

$./bin/client # Connect to OpenDaylight with the client
opendaylight-user@root> feature:install odl-base-all odl-aaa-authn odl-
restconf odl-nsf-all odl-adsal-northbound odl-mdsal-apidocs \
odl-ovsdb-openstack odl-ovsdb-northbound odl-dlux-core

• If everything is installed correctly, you should now be able to log in to the dlux interface
on http://$CONTROL_HOST:8181/dlux/index.html - the default username and
password is "admin/admin" (see screenshot below)

http://www.opendaylight.org/software/downloads

OpenDaylight and OpenStack February 21, 2016 Beryllium

3

Ensuring OpenStack network state is clean
When using OpenDaylight as the Neutron back-end, ODL expects to be the only source of
truth for Open vSwitch configuration. Because of this, it is necessary to remove existing
OpenStack and Open vSwitch configurations to give OpenDaylight a clean slate.

• Delete instances

$ nova list
$ nova delete <instance names>

• Remove link from subnets to routers

$ neutron subnet-list
$ neutron router-list
$ neutron router-port-list <router name>
$ neutron router-interface-delete <router name> <subnet ID or name>

• Delete subnets, nets, routers

$ neutron subnet-delete <subnet name>
$ neutron net-list
$ neutron net-delete <net name>
$ neutron router-delete <router name>

• Check that all ports have been cleared - at this point, this should be an empty list

$ neutron port-list

Ensure Neutron is stopped
While Neutron is managing the OVS instances on compute and control nodes,
OpenDaylight and Neutron can be in conflict. To prevent issues, we turn off Neutron server
on the network controller, and Neutron’s Open vSwitch agents on all hosts.

• Turn off neutron-server on control node

systemctl stop neutron-server

• On each node in the cluster, shut down and disable Neutron’s agent services to ensure
that they do not restart after a reboot:

systemctl stop neutron-openvswitch-agent
systemctl disable neutron-openvswitch-agent

Configuring Open vSwitch to be managed by OpenDaylight
On each host (both compute and control nodes) we will clear the pre-existing Open vSwitch
config and set OpenDaylight to manage the switch:

• Stop the Open vSwitch service, and clear existing OVSDB (ODL expects to manage
vSwitches completely)

systemctl stop openvswitch
rm -rf /var/log/openvswitch/*
rm -rf /etc/openvswitch/conf.db
systemctl start openvswitch

OpenDaylight and OpenStack February 21, 2016 Beryllium

4

• At this stage, your Open vSwitch configuration should be empty:

[root@dneary-odl-compute2 ~]# ovs-vsctl show
9f3b38cb-eefc-4bc7-828b-084b1f66fbfd
 ovs_version: "2.1.3"

• Set OpenDaylight as the manager on all nodes

ovs-vsctl set-manager tcp:${CONTROL_HOST}:6640

• You should now see a new section in your Open vSwitch configuration showing that you
are connected to the OpenDaylight server, and OpenDaylight will automatically create a
br-int bridge:

[root@dneary-odl-compute2 ~]# ovs-vsctl show
9f3b38cb-eefc-4bc7-828b-084b1f66fbfd
 Manager "tcp:172.16.21.56:6640"
 is_connected: true
 Bridge br-int
 Controller "tcp:172.16.21.56:6633"
 fail_mode: secure
 Port br-int
 Interface br-int
 ovs_version: "2.1.3"

• (BUG WORKAROUND) If SELinux is enabled, you may not have a security context in place
which allows Open vSwitch remote administration. If you do not see the result above
(specifically, if you do not see "is_connected: true" in the Manager section), set SELinux to
Permissive mode on all nodes and ensure it stays that way after boot:

setenforce 0
sed -i -e 's/SELINUX=enforcing/SELINUX=permissive/g' /etc/selinux/config

• Make sure all nodes, including the control node, are connected to OpenDaylight

• If you reload DLUX, you should now see that all of your Open vSwitch nodes are now
connected to OpenDaylight

OpenDaylight and OpenStack February 21, 2016 Beryllium

5

• If something has gone wrong, check <code>data/log/karaf.log</code> under the
OpenDaylight distribution directory. If you do not see any interesting log entries, set
logging for OVSDB to TRACE level inside Karaf and try again:

log:set TRACE ovsdb

Configuring Neutron to use OpenDaylight

Once you have configured the vSwitches to connect to OpenDaylight, you can now ensure
that OpenStack Neutron is using OpenDaylight.

First, ensure that port 8080 (which will be used by OpenDaylight to listen for REST calls)
is available. By default, swift-proxy-service listens on the same port, and you may need
to move it (to another port or another host), or disable that service. I moved it to port
8081 by editing <code>/etc/swift/proxy-server.conf</code> and <code>/etc/cinder/
cinder.conf</code>, modifying iptables appropriately, and restarting swift-proxy-service
and OpenDaylight.

• Configure Neutron to use OpenDaylight’s ML2 driver:

crudini --set /etc/neutron/plugins/ml2/ml2_conf.ini ml2 mechanism_drivers
 opendaylight
crudini --set /etc/neutron/plugins/ml2/ml2_conf.ini ml2 tenant_network_types
 vxlan

cat <<EOT>> /etc/neutron/plugins/ml2/ml2_conf.ini
[ml2_odl]
password = admin
username = admin
url = http://${CONTROL_HOST}:8080/controller/nb/v2/neutron
EOT

• Reset Neutron’s ML2 database

mysql -e "drop database if exists neutron_ml2;"
mysql -e "create database neutron_ml2 character set utf8;"
mysql -e "grant all on neutron_ml2.* to 'neutron'@'%';"
neutron-db-manage --config-file /usr/share/neutron/neutron-dist.conf --
config-file /etc/neutron/neutron.conf \
--config-file /etc/neutron/plugin.ini upgrade head

• Restart neutron-server:

systemctl start neutron-server

Verifying it works

• Verify that OpenDaylight’s ML2 interface is working:

curl -u admin:admin http://${CONTROL_HOST}:8080/controller/nb/v2/neutron/
networks

{
 "networks" : []
}

OpenDaylight and OpenStack February 21, 2016 Beryllium

6

If this does not work or gives an error, check Neutron’s log file in <code>/var/log/
neutron/server.log</code>. Error messages here should give some clue as to what the
problem is in the connection with OpenDaylight

• Create a net, subnet, router, connect ports, and start an instance using the Neutron CLI:

neutron router-create router1
neutron net-create private
neutron subnet-create private --name=private_subnet 10.10.5.0/24
neutron router-interface-add router1 private_subnet
nova boot --flavor <flavor> --image <image id> --nic net-id=<network id>
 test1
nova boot --flavor <flavor> --image <image id> --nic net-id=<network id>
 test2

At this point, you have confirmed that OpenDaylight is creating network end-points for
instances on your network and managing traffic to them.

Congratulations! You’re done!

OpenStack with GroupBasedPolicy
This section is for Application Developers and Network Administrators who are looking to
integrate Group Based Policy with OpenStack.

To enable the GBP Neutron Mapper feature, at the karaf console:

feature:install odl-groupbasedpolicy-neutronmapper

Neutron Mapper has the following dependencies that are automatically loaded:

odl-neutron-service

Neutron Northbound implementing REST API used by OpenStack

odl-groupbasedpolicy-base

Base GBP feature set, such as policy resolution, data model etc.

odl-groupbasedpolicy-ofoverlay

For Lithium, GBP has one renderer, hence this is loaded by default.

REST calls from OpenStack Neutron are by the Neutron NorthBound project.

GBP provides the implementation of the Neutron V2.0 API.

Features
List of supported Neutron entities:

• Port

• Network

• Standard Internal

http://developer.openstack.org/api-ref-networking-v2.html

OpenDaylight and OpenStack February 21, 2016 Beryllium

7

• External provider L2/L3 network

• Subnet

• Security-groups

• Routers

• Distributed functionality with local routing per compute

• External gateway access per compute node (dedicated port required)

• Multiple routers per tenant

• FloatingIP NAT

• IPv4/IPv6 support

The mapping of Neutron entities to GBP entities is as follows:

Neutron Port

Figure 2.1. Neutron Port

The Neutron port is mapped to an endpoint.

The current implementation supports one IP address per Neutron port.

An endpoint and L3-endpoint belong to multiple EndpointGroups if the Neutron port is in
multiple Neutron Security Groups.

The key for endpoint is L2-bridge-domain obtained as the parent of L2-flood-domain
representing Neutron network. The MAC address is from the Neutron port. An L3-endpoint
is created based on L3-context (the parent of the L2-bridge-domain) and IP address of
Neutron Port.

Neutron Network

OpenDaylight and OpenStack February 21, 2016 Beryllium

8

Figure 2.2. Neutron Network

A Neutron network has the following characteristics:

• defines a broadcast domain

• defines a L2 transmission domain

• defines a L2 name space.

To represent this, a Neutron Network is mapped to multiple GBP entities. The first mapping
is to an L2 flood-domain to reflect that the Neutron network is one flooding or broadcast
domain. An L2-bridge-domain is then associated as the parent of L2 flood-domain. This
reflects both the L2 transmission domain as well as the L2 addressing namespace.

The third mapping is to L3-context, which represents the distinct L3 address space. The L3-
context is the parent of L2-bridge-domain.

Neutron Subnet

Figure 2.3. Neutron Subnet

OpenDaylight and OpenStack February 21, 2016 Beryllium

9

Neutron subnet is associated with a Neutron network. The Neutron subnet is mapped to a
GBP subnet where the parent of the subnet is L2-flood-domain representing the Neutron
network.

Neutron Security Group

Figure 2.4. Neutron Security Group and Rules

GBP entity representing Neutron security-group is EndpointGroup.

Infrastructure EndpointGroups

Neutron-mapper automatically creates EndpointGroups to manage key infrastructure items
such as:

• DHCP EndpointGroup - contains endpoints representing Neutron DHCP ports

• Router EndpointGroup - contains endpoints representing Neutron router interfaces

• External EndpointGroup - holds L3-endpoints representing Neutron router gateway
ports, also associated with FloatingIP ports.

Neutron Security Group Rules

This mapping is most complicated among all others because Neutron security-group-
rules are mapped to contracts with clauses, subjects, rules, action-refs, classifier-refs, etc.
Contracts are used between endpoint groups representing Neutron Security Groups. For
simplification it is important to note that Neutron security-group-rules are similar to a GBP
rule containing:

• classifier with direction

• action of allow.

Neutron Routers

OpenDaylight and OpenStack February 21, 2016 Beryllium

10

Figure 2.5. Neutron Router

Neutron router is represented as a L3-context. This treats a router as a Layer3 namespace,
and hence every network attached to it a part of that Layer3 namespace.

This allows for multiple routers per tenant with complete isolation.

The mapping of the router to an endpoint represents the router’s interface or gateway
port.

The mapping to an EndpointGroup represents the internal infrastructure EndpointGroups
created by the GBP Neutron Mapper

When a Neutron router interface is attached to a network/subnet, that network/subnet
and its associated endpoints or Neutron Ports are seamlessly added to the namespace.

Neutron FloatingIP

When associated with a Neutron Port, this leverages the GBP OfOverlay renderer’s NAT
capabilities.

A dedicated external interface on each Nova compute host allows for disitributed external
access. Each Nova instance associated with a FloatingIP address can access the external
network directly without having to route via the Neutron controller, or having to enable
any form of Neutron distributed routing functionality.

Assuming the gateway provisioned in the Neutron Subnet command for the external
network is reachable, the combination of GBP Neutron Mapper and OfOverlay renderer
will automatically ARP for this default gateway, requiring no user intervention.

Troubleshooting within GBP

Logging level for the mapping functionality can be set for package
org.opendaylight.groupbasedpolicy.neutron.mapper. An example of enabling TRACE
logging level on karaf console:

log:set TRACE org.opendaylight.groupbasedpolicy.neutron.mapper

OpenDaylight and OpenStack February 21, 2016 Beryllium

11

Neutron mapping example

As an example for mapping can be used creation of Neutron network, subnet and port.
When a Neutron network is created 3 GBP entities are created: l2-flood-domain, l2-bridge-
domain, l3-context.

Figure 2.6. Neutron network mapping

After an subnet is created in the network mapping looks like this.

Figure 2.7. Neutron subnet mapping

If an Neutron port is created in the subnet an endpoint and l3-endpoint are created. The
endpoint has key composed from l2-bridge-domain and MAC address from Neutron port. A
key of l3-endpoint is compesed from l3-context and IP address. The network containment
of endpoint and l3-endpoint points to the subnet.

OpenDaylight and OpenStack February 21, 2016 Beryllium

12

Figure 2.8. Neutron port mapping

Configuring GBP Neutron
No intervention passed initial OpenStack setup is required by the user.

More information about configuration can be found in our DevStack demo environment on
the GBP wiki.

Administering or Managing GBP Neutron
For consistencies sake, all provisioning should be performed via the Neutron API. (CLI or
Horizon).

The mapped policies can be augmented via the GBP UX,UX, to:

• Enable Service Function Chaining

• Add endpoints from outside of Neutron i.e. VMs/containers not provisioned in
OpenStack

• Augment policies/contracts derived from Security Group Rules

• Overlay additional contracts or groupings

Tutorials
A DevStack demo environment can be found on the GBP wiki.

OpenStack with Virtual Tenant Network
This section describes using OpenDaylight with the VTN manager feature providing
network service for OpenStack. VTN manager utilizes the OVSDB southbound service
and Neutron for this implementation. The below diagram depicts the communication
of OpenDaylight and two virtual networks connected by an OpenFlow switch using this
implementation.

https://wiki.opendaylight.org/view/Group_Based_Policy_(GBP)
https://wiki.opendaylight.org/view/Group_Based_Policy_(GBP)

OpenDaylight and OpenStack February 21, 2016 Beryllium

13

Figure 2.9. OpenStack Architecture

Configure OpenStack to work with OpenDaylight(VTN
Feature) using PackStack

Prerequisites to install OpenStack using PackStack

• Fresh CentOS 7.1 minimal install

• Use the below commands to disable and remove Network Manager in CentOS 7.1,

systemctl stop NetworkManager
systemctl disable NetworkManager

• To make SELINUX as permissive, please open the file "/etc/sysconfig/selinux" and change
it as "SELINUX=permissive".

• After making selinux as permissive, please restart the CentOS 7.1 machine.

Steps to install OpenStack PackStack in CentOS 7.1

• To install OpenStack juno, use the following command,

yum update -y
yum -y install https://repos.fedorapeople.org/repos/openstack/openstack-
juno/rdo-release-juno-1.noarch.rpm

• To install the packstack installer, please use the below command,

OpenDaylight and OpenStack February 21, 2016 Beryllium

14

yum -y install openstack-packstack

• To create all-in-one setup, please use the below command,

packstack --allinone --provision-demo=n --provision-all-in-one-ovs-
bridge=n

• This will end up with Horizon started successfully message.

Steps to install and deploy OpenDaylight in CentOS 7.1

• Download the latest lithium distribution code in the below link,

wget https://nexus.opendaylight.org/content/groups/public/org/
opendaylight/integration/distribution-karaf/0.3.1-Lithium-SR1/distribution-
karaf-0.3.1-Lithium-SR1.zip

• Unzip the lithium distribution code by using the below command,

unzip distribution-karaf-0.3.1-Lithium-SR1.zip

• Please do the below steps in the OpenDaylight to change jetty port,

• Change the jetty port from 8080 to something else as swift proxy of OpenStack is using
it.

• Open the file "etc/jetty.xml" and change the jetty port from 8080 to 8910 (we have
used 8910 as jetty port you can use any other number).

• Start VTN Manager and install odl-vtn-manager-neutron in it.

• Ensure all the required ports(6633/6653,6640 and 8910) are in the listen mode by
using the command "netstat -tunpl" in OpenDaylight.

Steps to reconfigure OpenStack in CentOS 7.1

• Steps to stop Open vSwitch Agent and clean up ovs

sudo systemctl stop neutron-openvswitch-agent
sudo systemctl disable neutron-openvswitch-agent
sudo systemctl stop openvswitch
sudo rm -rf /var/log/openvswitch/*
sudo rm -rf /etc/openvswitch/conf.db
sudo systemctl start openvswitch
sudo ovs-vsctl show

• Stop Neutron Server

systemctl stop neutron-server

• Verify that OpenDaylight’s ML2 interface is working:

curl -v admin:admin http://{CONTROL_HOST}:{PORT}/controller/nb/v2/neutron/
networks

{
 "networks" : []

OpenDaylight and OpenStack February 21, 2016 Beryllium

15

}

If this does not work or gives an error, check Neutron’s log file in /var/log/neutron/
server.log. Error messages here should give some clue as to what the problem is in
the connection with OpenDaylight

• Configure Neutron to use OpenDaylight’s ML2 driver:

sudo crudini --set /etc/neutron/plugins/ml2/ml2_conf.ini ml2
 mechanism_drivers opendaylight
sudo crudini --set /etc/neutron/plugins/ml2/ml2_conf.ini ml2
 tenant_network_types local
sudo crudini --set /etc/neutron/plugins/ml2/ml2_conf.ini ml2 type_drivers
 local
sudo crudini --set /etc/neutron/dhcp_agent.ini DEFAULT ovs_use_veth True

cat <<EOT | sudo tee -a /etc/neutron/plugins/ml2/ml2_conf.ini > /dev/null
 [ml2_odl]
 password = admin
 username = admin
 url = http://{CONTROL_HOST}:{PORT}/controller/nb/v2/neutron
 EOT

• Reset Neutron’s ML2 database

sudo mysql -e "drop database if exists neutron_ml2;"
sudo mysql -e "create database neutron_ml2 character set utf8;"
sudo mysql -e "grant all on neutron_ml2.* to 'neutron'@'%';"
sudo neutron-db-manage --config-file /usr/share/neutron/neutron-dist.conf
 --config-file /etc/neutron/neutron.conf --config-file /etc/neutron/
plugin.ini upgrade head

• Start Neutron Server

sudo systemctl start neutron-server

• Restart the Neutron DHCP service

system restart neutron-dhcp-agent.service

• At this stage, your Open vSwitch configuration should be empty:

[root@dneary-odl-compute2 ~]# ovs-vsctl show
686989e8-7113-4991-a066-1431e7277e1f
 ovs_version: "2.3.1"

• Set OpenDaylight as the manager on all nodes

ovs-vsctl set-manager tcp:127.0.0.1:6640

• You should now see a section in your Open vSwitch configuration showing that you are
connected to the OpenDaylight server, and OpenDaylight will automatically create a br-
int bridge:

[root@dneary-odl-compute2 ~]# ovs-vsctl show
686989e8-7113-4991-a066-1431e7277e1f
 Manager "tcp:127.0.0.1:6640"
 is_connected: true
 Bridge br-int
 Controller "tcp:127.0.0.1:6633"

OpenDaylight and OpenStack February 21, 2016 Beryllium

16

 is_connected: true
 fail_mode: secure
 Port "ens33"
 Interface "ens33"
 ovs_version: "2.3.1"

• Add the default flow to OVS to forward packets to controller when there is a table-miss,

ovs-ofctl --protocols=OpenFlow13 add-flow br-int
 priority=0,actions=output:CONTROLLER

• Please see the VTN OpenStack PackStack support guide on the wiki to create VM’s from
OpenStack Horizon GUI.

Implementation details

VTN Manager:

Install odl-vtn-manager-neutron feature which provides the integration with Neutron
interface.

feature:install odl-vtn-manager-neutron

It subscribes to the events from Open vSwitch and also implements the Neutron requests
received by OpenDaylight.

Functional Behavior

StartUp:

• The ML2 implementation for OpenDaylight will ensure that when Open vSwitch is
started, the ODL_IP_ADDRESS configured will be set as manager.

• When OpenDaylight receives the update of the Open vSwitch on port 6640 (manager
port), VTN Manager handles the event and adds a bridge with required port mappings
to the Open vSwitch at the OpenStack node.

• When Neutron starts up, a new network create is POSTed to OpenDaylight, for which
VTN Manager creates a Virtual Tenant Network.

• Network and Sub-Network Create: Whenever a new sub network is created, VTN
Manager will handle the same and create a vbridge under the VTN.

• VM Creation in OpenStack: The interface mentioned as integration bridge in the
configuration file will be added with more interfaces on creation of a new VM in
OpenStack and the network is provisioned for it by the VTN Neutron feature. The
addition of a new port is captured by the VTN Manager and it creates a vbridge interface
with port mapping for the particular port. When the VM starts to communicate with
other VMs, the VTN Manger will install flows in the Open vSwitch and other OpenFlow
switches to facilitate communication between them.

Note

To use this feature, VTN feature should be installed

https://wiki.opendaylight.org/view/Release/Lithium/VTN/User_Guide/Openstack_Packstack_Support

OpenDaylight and OpenStack February 21, 2016 Beryllium

17

Reference

https://wiki.opendaylight.org/images/5/5c/Integration_of_vtn_and_ovsdb_for_helium.pdf

	OpenDaylight and OpenStack
	Table of Contents
	Overview
	1. Installing OpenStack
	2. Installing OpenDaylight
	OpenStack with OVSDB
	Ensuring OpenStack network state is clean
	Ensure Neutron is stopped
	Configuring Open vSwitch to be managed by OpenDaylight
	Configuring Neutron to use OpenDaylight
	Verifying it works

	OpenStack with GroupBasedPolicy
	Features
	Configuring GBP Neutron
	Administering or Managing GBP Neutron
	Tutorials

	OpenStack with Virtual Tenant Network
	Configure OpenStack to work with OpenDaylight(VTN Feature) using PackStack
	Prerequisites to install OpenStack using PackStack
	Steps to install OpenStack PackStack in CentOS 7.1
	Steps to install and deploy OpenDaylight in CentOS 7.1
	Steps to reconfigure OpenStack in CentOS 7.1

	Implementation details
	VTN Manager:
	Functional Behavior

	Reference

